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Talk outline

[ Topic is lattice-based cryptography

◦ Hash Functions

◦ Program Obfuscation

◦ . . .

� Common theme: Quest for ”universal” tools
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Cryptographic Hash Functions
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Hash functions

▶ Hash functions are used everywhere in cryptography

� Both in theory and practice

� Hash-and-Sign, Merkle tree, -, ...

◦ SHA-2, SHA-3

◦ Factoring

◦ Discrete Log

◦ Elliptic Curves

◦ Isogeny-based

◦ Lattice-based

Goal: Given h, find x ̸= x′ s.t. h(x) = h(x′)

Security: such x, x′ always exist but are hard to find

▶ Which hash function is most secure?

Provably answer this, at least in theory?
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Most secure?

▶ What does most secure mean for some
ð

h ?

▶ Collisions for
ð

h must be as hard, as in any other h

▶ Implies a reduction: ∀h, h ≤
ð

h

� for fixed security parameter

�

ð
h inherits hardness from all h

▶ What are the reduction steps?
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Reduction steps h → Ch →
ð
h

Hash function h

1. Represent h in a universal way (e.g. use boolean circuits)

� h→ Ch

2. Reduce Ch to a hash function
ð

h

� Ch ≤
ð

h

� Find collisions in
ð

h =⇒ Find collisions in Ch, ∀h

3. Declare
ð

h as the most secure (WC/AVG)

What should
ð

h be?
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In the 90s...

▶ The question about
ð

h was asked in [Papadimitriou ’94]

...in the broader context of total problems (TFNP)

▶ It remained open, what
ð

h to use...

...it all starts with the pigeonhole principle

▶ We use it to define hash functions, prior to the reduction
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The pigeonhole principle – a reminder

Any function h : [n]→ [m] with n > m must have collisions

i.e. when |domain| > |range|

[n] = {1, . . . , n}
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Define hash functions

▶ Define the set of all (poly-size) functions h : [n]→ [m], with n > m

▶ i.e. all functions that compress their input

� for convenience, we refer to these as hash functions

▶ compress input → collisions exist �� → goal: find collisions

▶ This set is the union of:

1. Cryptographic hash functions (e.g. SHA-3, SIS)

2. Non-cryptographic hash functions (e.g. pairwise independence)
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Represent h – (step 1) – why circuits?

Want a universal way to represent any (poly-size) hash function h

(i.e. convenient to work with)

▶ Be agnostic of groups, rings, fields, distributions, keys∗, ...

▶ Represent every hash function h, in the same way

▶ Use the (poly-size) boolean circuit Ch that implements h

Ch : {0, 1}n → {0, 1}m with n > m ��

n,m depend on the security parameter

∗ keys are hardcoded in Ch, i.e. Chk
essentially
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A subtle point

▶ By definition, {Ch} includes all (poly-size) hash function circuits that

map {0, 1}n → {0, 1}m with n > m

▶ Even for hash functions we might have not discovered yet!

Note: we do not have to enumerate or explicitly know this set
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The question in [Pap94] – (step 2)

▶ Question: Reduce Ch to a ”natural” hash function
ð

h ?

What is ”natural” & why?

▶ Circuits vs ”everyday” problems

◦ NP-Hard: Circuit-SAT ≤p Subset-Sum, Clique, Vertex Cover, TSP

i.e. ”natural” problems

▶ Under every Ch maybe a ”natural”
ð

h like the Short Integer

Solutions (SIS) is hidden...

▶ This would imply:

Finding collisions in any Ch reduces to finding Short Integer Solutions!
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Goal in summary

h −→ Ch︸ ︷︷ ︸
step 1 – easy

−→
ð

h
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Goal in summary

h −→ Ch −→
ð

h︸ ︷︷ ︸
step 2 – reduction
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Our results (almost there)

We reduce any hash function to an almost lattice problem,

the constrained Short Integer Solutions problem (constrained-SIS)

◦ Sotiraki–Zampetakis–Z FOCS’18

◦ We believe the answer to be a lattice problem (ongoing work)
?⇒ lattice-based hash functions are the most secure

◦ We show the first
ð

h

◦ Solves open problem from [Pap94]

◦ Our reduction is worst-case

next: SIS reminder

14



The SIS problem [Ajtai ’96, Micciancio-Regev ’04]

▶ Given A← Zm×n
q with n > m log q (s.t. collisions exist)

▶ Find distinct x1,x2 ∈ {0, 1}n s.t.

A · x1 = A · x2 (mod q)

...implies short (x1 − x2) ∈ {0,±1}n s.t. A(x1 − x2) = 0

15
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The constrained-SIS problem

▶ Given A ∈ Zm×n
q and semi-structured G ∈ Zd×n

q with

n > (m+ d) log q

▶ Find distinct x1,x2 ∈ {0, 1}n s.t.

A · x1 = A · x2 (mod q)

G · x1 = G · x2 = 0 (mod q)
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constrained-SIS vs SIS

constrained-SIS (WC) SIS (AVG)

A is arbitrary

G is semi-structured

A is uniformly random

–

x1,x2 ∈ {0, 1}n s.t.

Ax1 = Ax2 and Gx1 = 0 = Gx2

x1,x2 ∈ {0, 1}n s.t.

Ax1 = Ax2

◦ unclear how to sample

”most secure” keys

◦ can sample keys

◦ unclear if SIS is the most secure

h

Goal: (aka reduction)

1. show that constrained-SIS is a hash function

2. reduce any hash function to constrained-SIS
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Goal: constrained-SIS is a hash function – pt1

Goal:

1. show that constrained-SIS = (A,G) is a hash function

▶ A and G must compress their common input

▶ A is compressing, choice of params ✓

▶ G is compressing, choice of params...

▶ ...but why should Gx = 0?

� G has structure ✓

18
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The G in constrained-SIS

G =



log q︷ ︸︸ ︷
1 2 4 · · · 2ℓ ⋆ ⋆ ⋆ · · · ⋆ . . . ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆ ⋆ · · · ⋆

0 1 2 4 · · · 2ℓ . . . ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆ ⋆ · · · ⋆
...

...
. . .

...
...

0 0 . . . 1 2 4 · · · 2ℓ ⋆ ⋆ ⋆ · · · ⋆︸ ︷︷ ︸
n−d log q



·



..

..

..

{0, 1}
...

{0, 1}



▶ G similar to the gadget matrix from [Micciancio-Peikert ’12]

▶ Gx = 0 can always be satisfied by some x ∈ {0, 1}n

� choose last (n− d log q) bits of x arbitrarily (last row)...

� ...Gx = 0⇔ 1x1 + 2x2 + 4x4 + · · ·+ 2ℓx2ℓ = − ⋆ ⋆ ⋆ · · · ⋆
� rest of x is uniquely determined using

backwards substitution & binary decomposition
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� choose last (n− d log q) bits of x arbitrarily (last row)...

� ...Gx = 0⇔ 1x1 + 2x2 + 4x4 + · · ·+ 2ℓx2ℓ = − ⋆ ⋆ ⋆ · · · ⋆
� rest of x is uniquely determined using

backwards substitution & binary decomposition
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an example with d = 3, n = 10, q = 8

 1 2 4 3 0 6 5 6 2 1

0 0 0 1 2 4 1 0 3 2

0 0 0 0 0 0 1 2 4 1

 ·



∗
∗
∗
∗
∗
∗
∗
∗
∗
1


=

 0

0

0

 (mod 8)
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an example with d = 3, n = 10, q = 8

 1 2 4 3 0 6 5 6 2 1

0 0 0 1 2 4 1 0 3 2

0 0 0 0 0 0 1 2 4 1

 ·



∗
∗
∗
∗
∗
∗
x7

x8

x9

1


=

 0

0

0

 (mod 8)

binary decomposition (last row)

1 · x7 + 2 · x8 + 4 · x9 + (1 · 1) = 0 (mod 8)⇒ x7 = x8 = x9 = 1
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an example with d = 3, n = 10, q = 8

 1 2 4 3 0 6 5 6 2 1

0 0 0 1 2 4 1 0 3 2

0 0 0 0 0 0 1 2 4 1

 ·



∗
∗
∗
x4

x5

x6

1

1

1

1


=

 0

0

0

 (mod 8)

binary decomposition (2nd row)

1 · x4 + 2 · x5 + 4 · x6 + (1 + 2 + 4 + 1)︸ ︷︷ ︸
back substitution

= 0 (mod 8)

22



an example with d = 3, n = 10, q = 8

 1 2 4 3 0 6 5 6 2 1

0 0 0 1 2 4 1 0 3 2

0 0 0 0 0 0 1 2 4 1

 ·



x1

x2

x3

1

0

0

1

1

1

1


=

 0

0

0

 (mod 8)

binary decomposition (1st row)

1 · x1 + 2 · x2 + 4 · x3 + 17︸︷︷︸
back substitution

= 0 (mod 8)
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an example with d = 3, n = 10, q = 8

 1 2 4 3 0 6 5 6 2 1

0 0 0 1 2 4 1 0 3 2
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

1

1

1

1

0

0

1

1

1

1
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=

 0

0

0

 (mod 8)
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Goal: constrained-SIS is a hash function – pt2

▶ 2n−d log q different values of x can satisfy Gx = 0

▶ same x are mapped as: x 7→ Ax

▶ range of x 7→ Ax is qm

▶ 2n−d log q > qm ⇒ enough x to have collisions in A

i.e. |domain| > |range|

constrained-SIS is a hash function ✓

next: Ch ≤ constrained-SIS
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Goal: Ch ≤ constrained-SIS

Reduce Ch to constrained-SIS

Goal: Construct A,G out of Ch

we start with G
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Ch ≤ constrained-SIS – the G pt

▶ Embed Ch in G using OR and XOR gates

� Circuit gates in Ch → Linear equations in G

OR: x1 ∨ x2 = y, z = x1 ⊕ x2 ⇐⇒ 1y + 2z − x1 − x2 = 0 (mod 4)

XOR: x1 ⊕ x2 = y, z = x1 ∧ x2 ⇐⇒ 1y + 2z − x1 − x2 = 0 (mod 4)

G =


output gate output wires 0 0 0

0 intermediate gate intermediate wires 0 0
...

...
. . .

...
...

0 0 . . . input gate input wires


▶ Gx1 = 0 = Gx2 represents evaluation of Ch(x1) and Ch(x2)

� x contains evaluation of Ch(x) gate-by-gate

� x = (output, intermediate steps, input)T
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Ch ≤ constrained-SIS – the A pt

A extracts the output of Ch(x) from x

▶ Set A = (1, 0, 0)

▶ x = (output, intermediate steps, input)T

▶ Ax = output ⇒ Ax = Ch(x)

▶ Ax1 = Ax2 implies Ch(x1) = Ch(x2) ⇒ a collision for h ✓

Find Short Integer Solutions for A,G =⇒ Find collisions in constrained-SIS

=⇒ Find collision in Ch for any h

=⇒ ð
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Series of reductions

Our result shows that:

SIS, LWE, SIVP, GapSVP, Minkowksi, n-SVP, SHA, DLog, . . . ≤ constrained–SIS

These problems can be solved by finding collisions

Minkowski: ||v||2 ≤
√
ndet(L)1/n

29



The post-quantum quest

A strong post-quantum guarantee for
ð

h ?

A quantum speedup for constrained-SIS

⇐⇒ quantum speedup for finding collisions, in general

”Morally”, a quantum speedup for lattice problems(?)

⇐⇒ quantum speedup for finding collisions, in general

This would be a strong implication. Should we expect this?

This motivates the open problem section

30
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Open problems

� A worst-to-average case reduction from constrained-SIS to itself?

� Conjecture for
ð

h : A← $, G← semi-random (random ⋆)

experiments?

▶ approx-SVP/CVP equivalent to constrained-SIS?

� approx-SVP/CVP are fundamental lattice problems

� Minkowski short vectors & pigeonhole principle

▶ Direct reduction of specific hash functions to lattice problems?

� SHA ≤ approx-SVP? → provable security level?

, Structured lattices in this framework? (e.g. ideal lattices)

⋆ understand potential & limitations of structured lattices

Z on structured lattices: more evidence for hardness, the better we sleep

31
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Back to [Papadimitriou ’94]

...mathematical principles that guarantee a solution...

▶ The handshake lemma. Given undirected graph G(V,E):∑
v∈V

deg(v) = 2|E|

▶ A vertex with odd degree, implies another vertex with odd degree

▶ Hardness in finding this other odd degree vertex
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Complexity of factoring integers? in PPA [Jerábek ’16]

▶ How low can Factoring go?

▶ Factoring ≤ approx-SVP/CVP?

33



next: obfuscation!

Ô

34



modern crypto (we use it everyday)

§ ò � ] ³  ó Ð � - ¬ \ Æ � ° 


A non-exhaustive list:

▶ Public-key encryption – (pk, sk) e.g. RSA

▶ Zero Knowledge Proofs

▶ Multiparty Computation

▶ Attribute-Based Encryption

▶ Fully-Homomorphic Encryption

...

Super-tool to build crypto tools?

� Program Obfuscation

35



modern crypto (more than this: foundations)

§ ò � ] ³  ó Ð � - ¬ \ Æ � ° 


A non-exhaustive list:

▶ Public-key encryption – (pk, sk) e.g. RSA

▶ Zero Knowledge Proofs

▶ Multiparty Computation

▶ Attribute-Based Encryption

▶ Fully-Homomorphic Encryption

...

Super-tool to build crypto tools?

� Program Obfuscation

35



modern crypto (a natural question)
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modern crypto (the answer: yes)
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Program Obfuscation

Main character: programs

Goal: hide program secrets

36



What is obfuscation? (main character)

▶ An obfuscator is a program compiler

x −→ P −→ P (x)

obfuscator

x −→ P̃ −→ P (x)

P̃ hides implementation details of P

e.g. constants, variable values, procedures
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What is obfuscation? (obf → code)
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P̃ hides implementation details of P
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What is obfuscation? (code hides secrets)

▶ An obfuscator is a program compiler

x −→ P −→ P (x)

obfuscator

x −→ P̃ −→ P (x)

P̃ hides implementation details of P

e.g. constants, variable values, procedures
37



Virtual Black-Box (VBB) security [Had00, BGI+01]

▶ An obfuscator is a program compiler

x −→ P −→ P (x)

obfuscator

x −→ P̃ −→ P (x)

VBB security: only learn (x, P (x))

38



Obfuscation in practice

◦ Heuristic solutions (obfuscation as a product)

◦ International C code obfuscation (since 1984)

▶ Goal: prove security based on a hard math problem

◦ e.g. Lattice problems
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Does VBB obfuscation exist?

x −→ P̃ −→ P (x)

Too good to be true?

40



Does VBB obfuscation exist?

▶ VBB obfuscation is impossible in the general case ⌢
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▶ ...and a few programs that can be VBB obfuscated

◦ simple programs that predate our work

[Can97, Wee05, CD08, CRV10, BVWW16, Zha16]

point functions, hyperplanes, conjunctions

® Can we obfuscate more programs ®
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Our results

▶ Wichs-Z FOCS’17

concurrent/independent GKW’17

◦ Distribution-VBB obfuscate a large and expressive family of

programs

◦ Most general result so far, provably secure under the

Learning-with-Errors assumption
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Compute-and-Compare programs (definition)

f(·) ?
= y

params: f, y,m

m

⊥

x
f(x

) =
y

f(x) ̸= y
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Compute-and-Compare programs (input)

f(x)
?
= y

params: f, y,m

m

⊥

x

f(x
) =

y

f(x) ̸= y
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Compute-and-Compare programs (output)

f(x)
?
= y

params: f, y,m

m

⊥

x
f(x

) =
y

f(x) ̸= y
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Compute-and-Compare programs (output)

f(x)
?
= y

params: f, y,m

m

⊥

x
f(x

) =
y

f(x) ̸= y
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CC obfuscation & security

f(x)
?
= y

params: f, y,m

m

⊥

x

Black-Box simulation security when y is random given f,m

Obfuscation hides params: f, y,m
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Evasive programs

▶ if y is random given f,m...

▶ ...then for most x⇒ f(x) ̸= y

▶ why bother then?

44



Why obfuscate evasive programs?

Two groups of users

Can predict y

Correctness is meaningful

Security, not meaningful

Cannot predict y

Correctness, not meaningful

Security is meaningful
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Applications

New applications �

▶ Hide the access policy: upgrade Attribute-based Encryption to

Predicate Encryption

◦ re-use existing ABE keys (modular approach)

▶ Upgrade Witness Encryption to null iO

▶ Private authentication using biometric data

▶ Obfuscate conjunctions under LWE
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Post-quantum applications

some recent work �

▶ Post-Quantum Multi-Party Computation

[ABGKM, EUROCRYPT ’21]

▶ Post-Quantum Zero-Knowledge in Constant Rounds

[Bitansky-Shmueli, STOC ’20]

▶ Weak Zero-Knowledge

[Bitansky-Khurana-Paneth, STOC ’19]

▶ Optimal Traitor-Tracing

[CVWWW, TCC ’18]

optimized construction [GVW’18]

perfect correctness [GKVW’20]

47



On circular security

Encrypt your own secret key: Proofs and Heuristics
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A fundamental question [GM’84]

▶ Is Enc(pk, ski) always secure?

◦ bit-by-bit encryption of msg = sk

▶ We give a negative answer ⌢

◦ public-key bit-by-bit CPA secure → circular insecure

(strong/non-pq assumptions [Rot13, KRW15])

▶ We refute a Random-Oracle heuristic for security of Enc(pk, ski)

◦ the only heuristic transformation known

▶ Why investigate this type of security?

◦ Fundamental question

◦ Recently in the news! (iO candidates)

$ Fully-Homomorphic Encryption (bootstrapping)
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Can Random Oracles help?

▶ Random Oracles (RO) are used both in theory and practice

� Publicly accessible gigantic source of randomness

� i.e. RO(x) = random

▶ In practice, replacing RO = SHA-2/SHA-3

▶ In theory, replacing RO = it’s complicated
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Can Random Oracles really help?

Power of RO 9

▶ Transform any IND-CPA scheme to a circular secure one [BRS03]

▶ EncRO(pk,m) = Enc(pk, r), RO(r)⊕m

Power of obfuscation :

▶ We construct an IND-CPA scheme that cannot be upgraded as

above...

...no matter which hash function is used to implement RO
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Circular insecurity: sem → circ-insec

Assume bit encryption

secret key: Dec(sk, ·) public key: Enc(pk, ·)

y ← $

Encpk(y)→

Decsk(·)
?
= y

params: sk, y, sk

→ sk

▶ sk′ → (sk, y) ▶ pk′ → (pk,Obf)

▶ y indep of sk⇒ semantic

security

ÿ recover sk⇒ break security!
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Random Oracles: real vs ideal

▶ GKW’17 shows similar result for Fujisaki-Okamoto

▶ Caution: RO Model → Standard Model (SHA-3, ...)

▶ Ideally, we wouldn’t need RO

� comparable efficiency without RO?
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is obfuscation a success story?

tales of iO

▶ ”relaxed” form of obfuscation ⇒
almost all crypto m

▶ indistinguishability Obfuscation

▶ iO most probably exists as of

2021 (non-pq)! [..., JLS’21, ...]

▶ other new constructions involve

new circular security definitions

▶ Cryptographic hardness of NASH

equilibria [AKV’05, BPR’15]

▶ 2-Round Multiparty Computation

[GGHR’14, GP’15]

▶ Program Watermarking [CHNVW

’16]

◦ Quach-Wichs-Z TCC’18

...

a(b+ c) ≈ ab+ ac

�
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Recent work – future post-quantum directions

▶ Adaptive prefix encryption under LWE (Z ’21)

� prefix enc = original Hierarchical IBE

� algebraic instead of bb IBE use – focus on params

� ...but ”really adaptive” post-quantum HIBE still open (EUROCRYPT

’10 [ABB10, CHKP10])

� pairings superior to lattices

▶ (Zero-Knowledge) Proofs, Obfuscation (iO), FHE

� very active for post-quantum – theory & practice

⋆ Structured lattices: new techniques/algorithms?

� efficient ZK → new ideas

▶ IBE/ABE followed after PKE. Next primitive to ?

♥ LWR, LPN
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Thank you!

char

_3141592654 [3141

],__3141 [3141]; _314159 [31415] , _3141 [31415]; main (){ register char*

_3_141 ,*_3_1415 , *_3__1415; register int _314 ,_31415 ,__31415 ,*_31 ,

_3_14159 ,__3_1415 ;* _3141592654=__31415=2, _3141592654 [0][ _3141592654

-1]=1[ __3141 ]=5; __3_1415 =1;do{_3_14159=_314=0,__31415 ++; for( _31415

=0; _31415 <(3 ,14 -4)* __31415;_31415 ++) _31415[_3141 ]= _314159[_31415 ]= -

1;_3141 [* _314159=_3_14159 ]=_314;_3_141=_3141592654+__3_1415;_3_1415=

__3_1415 +__3141;for (_31415 = 3141-

__3_1415 ; _31415;_31415 --

,_3_141 ++, _3_1415 ++){ _314

+=_314 <<2 ; _314 <<=1; _314+=

*_3_1415;_31 =_314159+_314;

if(!(* _31 +1) )* _31 =_314 /

__31415 ,_314 [_3141]=_314 %

__31415 ;* ( _3__1415=_3_141

)+= *_3_1415 = *_31;while(*

_3__1415 >= 31415/3141 ) *

_3__1415 += - 10,(*-- _3__1415

)++; _314=_314 [_3141]; if ( !

_3_14159 && * _3_1415)_3_14159

=1,__3_1415 = 3141- _31415 ;}if(

_314+( __31415 >>1)>=__31415 )

while ( ++ * _3_141 ==3141/314

)*_3_141 --=0 ;}while(_3_14159

) ; { char * __3_14= "3.1415";

write ((3,1), (--*__3_14 ,__3_14

),(_3_14159 ++,++ _3_14159 ))+

3.1415926; } for ( _31415 = 1;

_31415 <3141- 1; _31415 ++) write(

31415% 314-( 3,14), _3141592654[

_31415 ] + "0123456789","314"

[ 3]+1)- _314; puts ((* _3141592654 =0

,_3141592654 )) ;_314= *"3.141592";}

6th International Obfuscated C Code Contest (1989)
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